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REVIEW 

The emergence of epidemiology in the 
genomics age 
Muin J Khoury,1 Robert Millikan,2 Julian Little3 and Marta Gwinn1 

‘As genomics and epidemiology begin to intersect, there is the potential 
for both fields to be altered in ways that are mutually beneficial’ 
(R Millikan1) 

While observational epidemiology is considered to be the 
scientific foundation of public health2 it is often viewed as a 
‘soft science’ limited by an inherent inability to fully control for 
confounding, misclassification, and selection bias.3 Enter the 
‘genomics era’.4,5 With the completion of the Human Genome 
Project, and the eventual identification of thousands of human 
genetic variants, scientists are predicting that the use of 
personalized genomic information will revolutionize the future 
practice of medicine6 and public health.7 In this paper, we 
discuss the emerging role of epidemiology in the genomics era. 
In particular, we show how synergistic interaction between 
genomics and epidemiology is not only mutually beneficial but 
crucial to the optimal development of each field in the 21st 
century. Our thesis is twofold: 

1. Epidemiology is essential to fulfil the promise of genomics 
for clinical and public health practice. Epidemiological 
principles and methods will be applied for gene discovery, 
gene characterization in populations, as well as evaluation of 
genetic information in practice; and 

2. Genomics can enhance the potential for epidemiology to 
contribute to multidisciplinary scientific research. Genomic 
tools will influence epidemiological study design, analysis, 
and causal inference on ‘environmental’ causes of disease. 

Throughout this paper, we define genomics as ‘the study of the 
functions and interactions of all the genes in the genome’.6 

Although we focus on genomics, epidemiological approaches 
apply as well to all emerging ‘omic’ disciplines that are 
concerned with the study of gene products, expressions, and 
interactions (e.g. proteomics,8 transcriptomics,9 metabonomics,10 

and nutrigenomics11). We consider only the human genome 
although genomes of other organisms are among the 
‘environmental’ factors contributing to human health and 
disease. Lastly, we discuss only observational epidemiology, 
keeping in mind that experimental epidemiology is the scientific 
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basis for randomized controlled clinical trials. For additional 
references about genetics and genomics concepts and 
terminology, we refer readers to the recently published 
Encyclopedia of the Human Genome.12 

The impact of epidemiology on genomics 
‘Although experimental species are of great value for the initial 
identification and functional analysis of complex disease genes, final 
evidence for the involvement of these genes in human diseases must 
come from extensive epidemiological studies, preferably in different 
populations’ (Peltonen and McKusick13) 

Vision of genomics research in the 21st century 

The completion of the Human Genome Project in 2003 has 
heightened expectations that health benefits will follow quickly. 
In the US, the National Institutes for Health (NIH) has published 
a vision for the next generation of genomic research that will 
span the continuum from biology to health and society.14 This 
vision identifies ‘six critically important cross-cutting elements’: 
resources, technology development, computational biology (using 
mathematical and computational methods to understand complex 
biological phenomena), training; ethical, legal and social implications, 
and education. It acknowledges implicitly the need for more 
epidemiological research (e.g. resources to establish a ‘healthy 
cohort’ for correlating genetic variants with health and disease), 
the need to study gene–environment interactions (e.g. 
computational biology to elucidate effects of environmental factors 
and their interactions with genetic variants), the need to 
stimulate interdisciplinary collaboration (e.g. computational 
biology to promote ‘standardization of data sets’), and training to 
provide scientists with interdisciplinary skills). In addition, NIH 
recently published a scientific roadmap15 that addresses the 
need to uncover the daunting complexity of biological systems 
and their many interconnected networks of molecules, cells, 
tissues, their interactions, and regulation. 

The need for a ‘public health’ research strategy in 
genomics 

What is less often recognized but equally crucial in fulfilling the 
promise of the Human Genome Project is the need for a ‘public 
health’ strategy for guiding genetics research and for translating 
basic research findings into new opportunities for disease 
prevention, detection, and treatment.7 A population approach 
addresses critical gaps in translation: (1) population-level 
information on the role of genomic variation and its interaction 
with modifiable risk factors in health and disease; (2) evidence
based processes for assessing the added value of genomic 
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information in diagnosis, treatment, and prevention of most 
human diseases; and (3) health system capacity to implement 
genomic applications in practice.7 The last issue was highlighted 
by Lenfant in his 2003 Shattuck lecture, ‘Lost in Translation,’16 in 
which he commented on the poor state of the ‘translational 
highway’ for taking findings from basic science and clinical 
investigations into the practice of medicine and public health. For 
example, although aspirin is highly effective for secondary 
prevention among patients with heart disease, it is prescribed for 
less than a third of patients,17 prompting his comment: ‘If we 
didn’t do it with aspirin, how can we expect to do it with DNA?’16 

The emergence of human genome epidemiology 

As the basic science of population health, epidemiology will 
have an increasingly important role in addressing these 
translation gaps, especially in the conduct of population-based 
research to assess the utility of genomic information in 
improving health and preventing disease.18 Over the past few 
years, we have promoted an epidemiological approach to the 
human genome–human genome epidemiology,19 an evolving 
field of inquiry that uses systematic application of 
epidemiological methods to assess the impact of human genetic 
variation on disease occurrence. As shown in Table 1, human 
genome epidemiology plays an important role in the continuum 
from gene discovery to the development and applications of 
genomic information for diagnosing, predicting, treating, and 
preventing disease. In 1998, the Human Genome Epidemiology 
Network, or HuGE Net,20 began as an ongoing global 
collaboration of individuals and organizations committed to the 
assessment of the impact of human genome variation on 
population health. Through collaboration, systematic reviews, 
training, and information dissemination (Figure 1), HuGE Net 
applies systematic approaches to build the global knowledge 
base on population characteristics of genes and their 
associations with various diseases. An important activity of 
HuGE Net is the development of guidelines, recommendations 
and methods for the appraisal and integration of 
epidemiological data on the human genome along the 
continuum from genetic research to genetic testing.21 The 
synthesis of knowledge is crucial to the evidence-based 
integration of human genomics into the practice of medicine 
and public health in the 21st century. 

HuGE Net continuously collects information on the published 
epidemiological literature on human genes. Between 2001 and 
2003 (Table 2), we saw an increasing number of published 
‘epidemiology’ papers on the human genome, most of which 
(86%) were on gene–disease associations.22 Unfortunately, many 
observational studies that are lumped under the rubric of 
‘epidemiology’ suffer from serious methodological flaws in study 
design, subject selection, genotype assessment, measurement of 
environmental exposures, small sample sizes, and lack of 
adjustment of potential confounding variables. These flaws have 
resulted in many unreplicated findings with non-causal 
explanations.23–25 Genetic ‘association studies’ are often 
inaccurately equated with ‘epidemiological studies,’ with the 
implicit if not explicit connotation of sub-optimal study design, as 
in a recent Lancet editorial: ‘In the genetics of complex diseases, 
association is in danger of becoming a rather dirty word.’26 

Population-based gene discovery and 
characterization 

Epidemiology can make a major contribution to genomics in the 
next decades by applying a well-disciplined methodological 
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Figure 1 The Human Genome Epidemiology Network: From primary 
research to synthesis and dissemination for policy and practice 

Table 1 Human genome epidemiology:a from gene discovery to applications 

From discovery to applications Epidemiologic impact on genomics Examples 

Gene discovery Epidemiological approaches to sound Co-operative Family Registries 
study design: selection, representativeness, 
and generalizability 

for Breast and Colorectal 
Cancer Research29,30 

Gene characterization Epidemiological measures of risk (relative, 
absolute and attributable fraction); 
Measurement of gene–environment 

Atherosclerosis Research in 
Communities33 National Birth 
Defects Prevention Network36 

interaction;Methods for validation 
and adjustment for extraneous factors 

Genomic testing Epidemiological evaluation of sensitivity, 
specificity and predictive values of genetic 

Pharmacogenomics47 Genomic 
profiling41 Mass screening38 

tests. Decision analysis using epidemiological 
measures 

a We use the term human genome epidemiology to refer to the continuum of epidemiological applications to the human genome. The term genetic 
epidemiology is more established in the literature and often has been used in the context of studies of gene discovery, most notably family studies. 
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Table 2 Number of publisheda human genome epidemiological 
papers, by type of paper and year of publication 

Year 

Type of paper 2001 2002 2003 

Population prevalence 308 347 307 
of genetic variants 

Genotype–disease 2137 2793 2920 
associations 

Gene–gene and gene– 436 573 587 
environment interaction 

Evaluation of genetic tests 95 92 94 
and newborn screening 

Allb 2478 3202 3415 

a Abstracts of published papers are available on the CDC online searchable 
database 22 (GDP Info). Search was conducted on 20 March 2004. 

b Total number of papers per year exceeds the sum of individual categories 
because of overlap in types of studies. 

approach to the design, conduct, and analysis of ‘association 
studies’19 and the process of causal inference from these 
studies. Because genomics employs laboratory methods, some 
may have the false impression (or hope) that findings from 
observational studies in genomics represent ‘experimental’ data 
and therefore offer a higher level of evidence of causation than 
other epidemiological studies, irrespective of study quality. As 
remarked by Potter,27 most genomic studies are observational 
in nature and therefore have the same limitations as other 
observational studies, thus deserving a rigorous epidemiological 
design, analysis, and interpretation. 

A deliberate epidemiological approach can support 
simultaneous gene discovery and population-based inference of 
risks. For example, case-control studies of population-based 
incident disease cases and their families provide a platform for 
conducting family-based linkage and association studies to 
discover new genes, and permit inferences regarding the 
contribution of these genes to the burden of disease in the 
underlying population.28 The National Cancer Institute (NCI) 
sponsors Co-operative Family Registries for Breast and 
Colorectal Cancer Research that reflect this philosophy.29,30 

Population-based case registries can support a number of study 
designs, including extended family studies, case-parent trios,28 

and case-control-family design.31 

In addition, efforts are now being made to integrate genomics 
into population-based epidemiological studies initiated in the 
pre-genomic era to study disease incidence and prevalence, 
natural history and risk factors. Examples of well known cohort 
studies include the Framingham study,32 the Atherosclerosis 
Research in Communities (ARIC33), the European Prospective 
Investigation on Cancer (EPIC34), and the newly designed 
National Children Study,35 a proposed US cohort study of 
100 000 pregnant women and their offspring to be followed 
from before to birth to age 21 years. 

An example of a population-based case-control study in the 
US is the ongoing CDC-sponsored National Birth Defects 
Prevention Study.36 This study is conducted in 10 states to 
assess the role of genetic and environmental factors in the 
occurrence of major structural birth defects. Cases are 
ascertained from state-based birth defects surveillance systems. 
Controls are randomly selected from birth certificates or 

hospital medical records. This is the largest ongoing population
based collaborative study in the US that covers a base 
population of almost half a million births a year.36 As of 
February 2004, the study included more than 12 000 cases and 
4000 controls (P Honein, CDC, personal communication). 

Epidemiological methods will also help estimate unbiased 
allele and genotype frequencies from cross-sectional population 
studies. Population prevalence data provide baseline estimates 
for guiding research and health policy. Unfortunately, most 
prevalence information comes from convenience samples or 
otherwise unrepresentative groups.22 An example of a 
population-based prevalence study is the analysis of two 
common mutations in the haemochromatosis gene (C282Y and 
H63D variants of HFE) in the US population. Steinberg et al. 
genotyped 5171 samples from the CDC’s Third National Health 
and Nutrition Examination Survey (NHANES III), a nationally 
representative survey conducted in the US from 1992 to 1994. 
Genotype and allele frequency data were cross-classified by sex, 
age, and race/ethnicity.37 

Epidemiology and genomic tests 

An epidemiological approach is fundamental to evaluating 
genomic tests, especially those intended for population 
screening and disease prevention.38 Many tests that will emerge 
in the next decades will not be used for diagnosing rare genetic 
diseases but for predicting the risk of common diseases in 
otherwise healthy people in order to guide decisions about 
preventive interventions or therapies.39 An example often 
quoted to illustrate this potential application of genetic tests is 
the hypothetical case scenario described by Collins in 1999.40 

He predicted that by 2010, a 23 year old man could undergo 
genetic testing and receive a report predicting his risk of several 
diseases based on analysis of genetic variants at multiple loci, a 
concept that has come to be called genomic profiling.41 This 
example highlights the need to obtain epidemiological data that 
are required for developing risk estimates. In addition, 
discussion of genomic profiling raises a number of evidence
based practice issues. Targeting interventions on the basis of 
genetic information may not be more effective or economical 
than population-wide interventions. In this fictitious example, 
the patient was given medical advice on smoking cessation, 
treatment of hypercholesterolaemia, and initiation of colorectal 
cancer screening that currently represent best practices without 
the use of genetic tests. (ref 19, p. 5) 

Although genomic profiling tests are commercially available, 
they are clearly not ready for prime time. Epidemiological 
studies and clinical trials to assess the clinical validity and utility 
of these tests have not been done.41–43 An argument for the 
biological plausibility of genomic profiling could be based on 
understanding interaction among genes in well-defined 
pathways (e.g. folate metabolism or carcinogen metabolism41). 
Yang et al.44 showed that bundling several variants from multiple 
loci could increase the predictive value of genetic testing for 
susceptibility to common diseases, especially in the presence of 
pertinent environmental exposures (e.g. dietary and supple
mental folic acid intake). Khoury et al.41 described a hypothetical 
example of a common disease (5% lifetime risk), for which three 
genetic variants at different loci and one environmental 
exposure are risk factors. Even for modest effects of each variant 
alone (risk ratios from 1.5 to 3.0) and modest interactions 
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between the exposure and the genes, the predictive value of the 
test for people with two (and especially three) disease-associated 
variants can be quite high (50–100%) in the presence of a 
modifiable exposure. However, for rarer diseases (�1 per 
10 000), the predictive value of multiple genotypes is much 
lower. Also, as increasing numbers of genes are added to a 
profile, the size of the highest risk group will decrease, thus 
diminishing the population impact of preventive interventions 
targeted to this group, especially in the setting of rare genotypes, 
weak associations, and weak interactions. We emphasize that 
these assessments of the potential impact of genomic profiling 
are based on hypothetical data. Even when real data are 
available from well-designed epidemiological studies, assessing 
the value of genomic profiling will require information on the 
costs, benefits, and risks of testing and interventions. 

The epidemiological approach is relevant to pharmaco
genomics, an emerging field at the intersection between 
pharmacology and genomics that promises customized 
treatment or chemoprevention on the basis of genetic variation 
and the use of genomics to better understand and improve 
target identification and drug delivery.45 With the recent Food 
and Drug Administration46 approval of the first DNA-based test 
for measuring variants in Factors V and II to provide man
agement to people at increased risk of deep vein thrombosis, we 
expect of the pace of pharmacogenomics development to 
accelerate. Epidemiological parameters are important in cost
effectiveness analysis to determine the value added by 
pharmacogenomic testing. Veenstra47 explored the conditions 
that would favour genetic testing in clinical practice to tailor 
individual treatment. He used the example of interaction 
between genetic variation in thiopurine S-methyltransferase 
(TPMT) and 6-mercaptopurine (6MP) in the treatment of 
childhood acute lymphoblasic leukaemia. TPMT is responsible 
for the inactivation of 6MP and TPMT deficiency is associated 
with severe haematopoietic toxicity when patients with 
deficient TPMT are given standard doses of 6MP. Veenstra 
described epidemiological parameters—such as prevalence of 
the deficient enzyme, and the strength of the drug–gene 
interaction in producing myelosuppression—that are needed to 
assess the cost-effectiveness of genetic testing before drug use in 
a decision analysis model (Table 3).47,48 

Another example of the increasing potential of pharma
cogenomics for clinical practice is the relationship between 
certain HLA alleles and abacavir hypersensitivity in the 

treatment of HIV1.49 Similar to the TPMT example above, 
epidemiological data will be useful in decision analysis of cost
effectiveness. 

Epidemiological parameters are also useful for assessing other 
tests that might be developed based on genomic technology. 
Examples of potentially emerging genomic tests include use of 
serum proteomic patterns for early detection of ovarian 
cancer,50 and genomic analysis of stool samples for early detec
tion of colorectal cancer.51 However, initial research results are 
not immediately generalizable to a population setting and these 
two examples require further study. For example, the positive 
predictive value of the test for ovarian cancer50 was overestim
ated because it was based on a study sample with 50% 
prevalence of ovarian cancer.52 The stool-based genomic test for 
colorectal cancer51 also requires further evaluation. For 
example, it is unknown whether stool-based genomic tests will 
be more sensitive and specific for detecting early colorectal 
cancer than traditional faecal occult blood testing (FOBT), 
which is reported to have 40% sensitivity and 96–98% 
specificity.53 Although stool-based genomic tests may be more 
acceptable to patients because they do not require sedation and 
endoscopy, and preferable for physicians because they do not 
require specialized health care personnel, determining whether 
stool-based genomic tests offer any advantages over traditional 
screening will ultimately depend on randomized clinical trials 
using morbidity and mortality as endpoints. 

The impact of genomics on epidemiology 
‘Genetic epidemiology is seen by many to be the only future for 
epidemiology.’ (Davey Smith54) 

‘The sequencing of the human genome offers the greatest opportunity 
for epidemiology since John Snow discovered the Broad Street pump.’ 
(Shpilberg 55) 

Just as epidemiology is crucial to the fulfilment of the 
promises of genomics, genomics will enhance the contributions 
of epidemiology in multidisciplinary scientific research. In 
response to general concerns about the value of epidemiological 
research, Butler commented that because of advances in 
genomics, ‘epidemiology (is) set to get fast track treatment’.56 

Genomics will influence epidemiology throughout the 
continuum from epidemiological study design to analysis and 
inference (Table 4). 

Table 3 The role of epidemiological data in assessing the cost-effectiveness of pharmacogenomic tests 

Variable 
Factors favouring cost-effectiveness 
of pharmacogenomic tests Role of epidemiology 

Genotype interacting with drug Prevalent genotype Need for population-based 
prevalence data 

Health outcome High burden of disease (in terms of 
morbidity and mortality) 

Need for epidemiological data 
to measure morbidity, disability, 
and mortality 

Gene–drug interaction Strong association between gene variants 
and adverse health outcomes among people 
taking the drug (also in comparison 
with other therapies or no therapies) 

Need for epidemiologic data to 
measure interactions 

Adapted from Veenstra.47 
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Table 4 The impact of genomics on epidemiology: study design, analysis, and interpretation 

Impact of genomics on 
From study design to inference Epidemiology Examples 

Epidemiological study design Emergence of large scale cohort 
& case-control studies 

Decode Genetics59 P3G 
collaboration62 UK Biobank56 

Emergence of new study designs 
(case-only, family-based) 

Population-based67 registries 
for cancer and birth defects 66 

Epidemiological analysis Peering into the ‘black box’ of Hierarchical methods 
risk factor epidemiology; 
Emerging methods for 
complex analyses 

Recursive partitioning 
methods77,80 Neural 
networks79 

Epidemiological inference Enhanced tools for causal inference 
& policy development with or 

Concept of Mendelian 
randomization54 

without using genomics in practice 

Table 5 Examples of large-scale population-based genomics studies in progress, 2004 

Study 

Decode Genetics59 

Sample size 

�100 000 

Population 

Iceland 

Study objectives 

‘To identify genetic causes of common diseases and 
develop new drugs and diagnostic tools.’ Measures 
genes, health outcomes, and link with genealogical 
database 

UK Biobank57 500 000 Population sample of 
people 45–69 years: 

‘To study the role of genes, environment and 
lifestyle’ Link with medical records 

CartaGene58 (Quebec) �60 000 Population sample of 
people 25–74 years 

‘To study genetic variation in a modern population.’ 
Link with health care records, and environmental 
and genealogical databases 

Estonia Genome Project60 �1 000 000 Estonian population ‘To find genes that cause and influence common 
diseases’ 

Link with medical records 

GenomeEUtwin61 ~800 000 twin pairs Twin cohorts from 
7 European countries + 
Australia 

‘To characterize genetic, environmental and lifestyle 
components in the background of health problems 

The last three projects are part of the global P3G collaboration (Public Population Project in Genomics).62 

Emergence of large population cohort studies 

Genomics is expanding the horizons of epidemiology by adding 
another dimension to the classic case-control, cohort, and cross
sectional studies. Indeed genomics is inspiring the development 
of very large longitudinal cohort studies and even studies of 
entire populations to establish repositories of biological 
materials (‘biobanks’) for discovery and characterization of 
genes associated with common diseases. Table 5 shows a partial 
listing of such studies in progress that range from large 
random samples of adult populations like the UK 
Biobank57 (N = 500 000) and the CartaGene58 project in 
Quebec (N = 60 000), to populations of entire countries such 
as Iceland59 (N = 100 000) and Estonia60 (N = 1 000 000), to 
a cohort of twins in multiple countries (GenomeEUtwin61). In 
addition to promoting gene discovery, these biobanks will help 
epidemiologists quantify the occurrence of diseases in various 
populations and to understand their natural histories and risk 
factors, including gene–environment interactions. 

Longitudinal studies permit repeated phenotypic and outcome 
measures on individuals over time, including intermediate 
biochemical, physiological and other ‘omic’ precursors and sequels 
of disease (gene expression, protein patterns, etc). Large cohort 
studies could also be used for nested case-control studies or even 

case-only studies as an initial screening method (see below). These 
studies will produce a large amount of data on disease risk factors, 
lifestyles, and environmental exposures, and provide opportunities 
for data standardization, sharing, and joint analyses. An example of 
data standardization across international boundaries is the global 
P3G (Public Population Project in Genomics62), which includes so 
far three international studies from Europe and North America 
(Table 4). ‘Harmonization’ is crucial to create comparability across 
sites on measures of genetic variation, environmental exposures, 
questionnaire data, and long-term health outcomes. It is imperative 
to develop and agree on common epidemiological methods and 
approaches that can be used to generate and test hypotheses on 
genetic and environmental influences and gene–environment 
interactions, and that will allow pooling and synthesis of results 
across different population groups. 

Emergence of novel epidemiological study designs: 
the case-only method 

We are also seeing the emergence of new or otherwise 
infrequently used study designs. We would like to highlight the 
case-only study.63 Although described before the genomics 
era,64 the case-only approach has received renewed attention 
because of its ability under some circumstances to test for 
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gene–environment interaction measured on a multiplicative 
scale.65 The case-only approach may also have other more 
robust applications (see below). Population-based disease 
registries of incident cancers,66 birth defects,67,68and other 
conditions offer a practical setting for case-only studies as an 
initial epidemiological mode of inquiry.65 Although case-only 
studies will never replace traditional case-control studies, we 
believe they can be a useful adjunct to: 

1. Scan for genotypes that potentially contribute most to 
disease occurrence in a population. By using the concept of 
population attributable fraction, case-only studies can 
provide an upper estimate of the contribution of complex 
risk factors, including multiple genetic variants at different 
loci, to disease occurrence. Genotypes comprising 
combinations of multiple genetic variants have a very low 
expected population frequency, even when the variants are 
individually common (for example, for four common alleles 
of 10% in the population, only 1 in 10 000 people are 
expected to have all four); therefore, the case-only approach 
could be useful in identifying combinations of genes to 
evaluate further for potential etiologic importance.65 

2. Evaluate disease aetiological, diagnostic, and prognostic 
heterogeneity. Genotype–phenotype correlations can be 
examined among subsets of cases defined clinically, or by use 
of biological markers based on genotype, gene expression, 
protein products, or other features. For example, a recent 
study found that mutations of the CARD15 gene known to 
be associated with Crohn’s disease were correlated with 
disease of the ileum but not the colon.69 In another 
example, Le Marchand et al. conducted a population-based 
study to evaluate overall and stage-specific associations of 
the CCND1 870A allele of the Cyclin D1 (CCND1) gene with 
colorectal cancer. They found that the allele was associated 
with colorectal cancer, and particularly with more severe 
forms of the disease that result in higher morbidity and 
mortality.70 We emphasize that results from both of the 
above studies are preliminary and need replication in 
additional studies. A third example is the analysis of 
genotype–phenotype correlation in cystic fibrosis, a common 
single gene disorder in people of Northern European 
descent. More than 1000 different mutations in the CFTR 
gene have been described,71 and genotypic heterogeneity 
explains in part the highly variable clinical expression of 
cystic fibrosis. Because lung function varies even among 
patients with similar CFTR genotype, other genetic and 
environmental determinants also have a role.72 

3. Detect gene–gene and gene–environment interaction on a 
multiplicative scale. Limitations of this approach have been 
raised, including the assumption of independence between 
factors, the inability to measure main effects of factors and 
the restriction of the analysis to detection of departure from 
multiplicative effects.65 

Finally, it is important to note that case-only studies are 
susceptible to the same potential methodological limitations 
found in case-control studies, including selection bias, 
information bias, confounding, and sample size and power. 
These limitations require that results of epidemiological studies 
be replicated in multiple settings. 

Epidemiology and the problem of complexity 

The discovery of increasing numbers of genetic variants is 
confronting epidemiologists with immense analytical 
challenges. Integrating genomics into mainstream epidemiolo
gical research creates increased potential for type I and type II 
errors. The concept of the epidemiological ‘fishing expedition’ 
will become grander in the genomics era. Large scale data 
dredging will unavoidably lead to numerous positive associa
tions that are not replicated,73 risking backlash in the scientific 
community against the epidemiological approach. Although 
observational studies without a solid epidemiological 
foundation are particularly problematic, even well-designed 
epidemiological studies are susceptible to type I errors. One 
reason for type I errors is the custom of declaring statistical 
significance based on P-values. Wacholder74 has developed an 
approach to assess the probability that—given a statistically 
significant finding—no true association exists between a genetic 
variant and disease. This approach incorporates not only the 
observed P-value but the prior probability of the gene–disease 
association and the statistical power of the test. The problem of 
false positivity is compounded by the obvious tendency of 
authors and journals to publish ‘positive’ or interesting findings 
(publication bias). We hope that the world-wide movement for 
open access scientific publishing75 will be able to counter this 
bias so that both ‘positive’ and ‘negative’ results will be 
disseminated in a timely fashion. 

The problem of type II errors or poor statistical power is 
equally challenging. Consider for a moment the staggering 
implication for epidemiology of too many genes. Imagine that 
for a common disease only 10 genes contribute a substantial 
population attributable fraction. Even if variation at each locus 
can be classified in a dichotomous fashion (e.g. susceptible 
genotype versus not), this classification will create 2 to the 
power 10, or over a 1000, possible strata. Dichotomous classi
fication based on just 20 genes will produce over a million 
strata. This is methodologically untenable especially when one 
must consider the interactions of these genes with other genes 
and environmental factors. Emerging technology will allow us 
to study simultaneously hundreds and thousands of genome 
variations, gene expression profiles, and protein patterns. Our 
simple epidemiological analysis of 2 � 2 tables, stratified 
analysis and even logistic regression analysis, the work horse of 
case-control studies, will quickly face their limitations in an age 
when a large amount of data on each individual is the rule 
rather than the exception.76 

Emerging statistical approaches to complexity 

The problem of increasing complexity is generating enthusiastic 
responses from the statistical community. Novel methodologies 
have emerged, including hierarchical regression and Bayesian 
methods.77,78 These methods may be suited to address the 
problem of false positive associations resulting from multiple 
comparisons. Bayesian methods integrate a priori expectations, 
which may be especially relevant for interaction analysis. 
Neural network analysis is another approach that can be viewed 
as generalization of logistic regression to non-linear relation-
ships,79 avoiding the issue of multiple dimensions. However, 
epidemiological analysis based on neural networks has not 
enjoyed much popularity yet. 
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Another approach to joint analysis of multiple genes for 
quantitative traits is the combinatorial partitioning method 
(CPM),80 which represents an extension of traditional analysis 
of variance between and within genotypes at one gene locus. An 
excess of variability between the genotypes, relative to within 
genotypes, represents an association between the gene and the 
trait. The CPM extends this concept to many genes by genotypic 
partitioning based on multiple loci. The aim of CPM is to find 
genotypic partitions such that trait variability is much lower 
within than between the partitions. An extension of CPM is the 
multifactor dimensionality reduction (MDR) method.81 Using 
this approach, genotypes at multiple loci are grouped into a few 
categories to create high-risk and low-risk groups. This reduces 
the number of genotypes from many dimensions to one. The 
new one-dimensional complex genotype is assessed for its ability 
to predict disease status.82 Among analysis methods that have 
been proposed are recursive partitioning methods,83 such as 
tree-based association analysis.84 For example, these methods 
may be able to classify people into two or more distinct groups 
with respect to their propensity to ‘bleed’ or ‘coagulate’ based on 
the combination of genotypes at multiple loci involved in the 
delicate balance between bleeding and thrombosis (e.g. the 
cascade of factors I thru X). When based on understanding of 
underlying biology, it is possible that these composite complex 
genotypes may be useful for predicting disease outcomes or 
response to treatment. Although these methods continue to 
evolve, they may still be liable to data-driven findings, and so far 
have limited applications in epidemiological studies. 

Emergence of Mendelian randomization as a tool 
for epidemiological inference on environmental 
risk factors 

Genomics may also enhance the power of epidemiology by 
providing evidence that enhances causal inference on the 
association between environment (broadly defined to include 
chemical, biological, nutritional and social factors) and human 
diseases.54 Associations between exposures and diseases seen in 
epidemiological studies are often confounded by unmeasured 
factors in spite of efforts to optimize the conduct of these 
studies. As reviewed by Davey Smith and Ebrahim, Mendelian 
randomization, the random assortment of genes from parents to 
offspring that occurs during meiosis, may provide an indirect 
method for assessing the causal nature of environmental 
exposures, as certain genotypes can be viewed as proxies for 
certain exposures.54 The association between a disease and a 
polymorphism that mimics the biological relationship between 
a proposed exposure and disease is viewed as not susceptible to 
the effect of confounding that may plague observational studies. 

The concept of Mendelian randomization can be illustrated 
using the example of the C677T variant of the methylene 
tetrahydrofolate reductase (MTHFR) gene, which results in 
reduced enzyme activity.54 The enzyme is involved in the 
conversion of 5,10-methylene tetrahydrofolate (from dietary 
folate) to 5-methyl tetrahydrofolate, which is needed for the 
conversion of homocysteine to methionine. Thus, this genetic 
variant mimics low dietary folate intake leading to higher levels 
of homocysteine. The authors then discuss causal inference on 
the role of folate in neural tube defects (NTD). They found close 
agreement between the findings from observational studies 
showing protective effects of folic acid supplements; genetic 

association studies showing increased risk of NTD for maternal 
but not paternal TT genotypes (reflecting the low folate 
intrauterine environment); and randomized controlled clinical 
trials showing that folic acid supplements reduce risk of 
occurrence and recurrence of NTD. They suggest that 
epidemiological studies demonstrating the relationship between 
MTHFR C677T and NTD would have provided strong evidence of 
the beneficial effect of folic acid supplementation even before 
data became available from controlled clinical trials. Such 
evidence is important because traditional epidemiological 
studies of dietary folate and vitamin supplements in relation to 
NTD are subject to biased recall of diet and supplement use and 
to confounding of folate intake with other factors that may also 
influence NTD risk. Thus, examining the association of MTHFR 
genotype with NTD risk provides additional confidence in the 
causal nature of the protective effect of folates as a population
wide intervention without implying a need for genetic testing. 

In another example of ‘Mendelian randomization’, Hines 
et al.. conducted a nested case–control study based on the 
Physicians’ Health Study to investigate the relationship of 
myocardial infarction with alcohol consumption and a specific 
polymorphism in the gene for alcohol dehydrogenase type 3 
(ADH3) that alters the rate of alcohol metabolism.85 They found 
that moderate drinkers who are homozygous for the slow
oxidizing ADH3 allele have higher high density lipoprotein 
levels and a substantially decreased risk of myocardial 
infarction. The authors commented that: 

observed associations between the risk of a disease and 
the presence of functional variants in genes that lead to the 
metabolism or transduction of the factor that underlies the disease 
add substantial support to the idea that the exposure to the factor 
is directly related to causation…Improving our ability to identify 
specific lifestyle and environmental factors as causes of a given 
disease may prove to be one of the main benefits of the study of 
common variants in metabolic genes and disease.85 

While Mendelian randomization has the promise of helping 
epidemiologists derive better causal inference from environ
mental risk factor–disease association, there are some caveats.86 

Although appealing as a concept, Mendelian randomization still 
has to grapple with the common methodological issues that 
plague many association studies including small sample sizes, 
linkage disequilibrium, population stratification, and gene–gene 
and gene–environment interaction that may mask simple gene 
association effects. Currently, the utility of this approach is also 
limited by our incomplete understanding of gene functions and 
biological pathways important in the pathogenesis of common 
diseases. As our understanding improves in decades to come, 
the concept of Mendelian randomization may become 
increasingly useful to epidemiologists. 

Of note, the February 2004 issue of the International Journal of 
Epidemiology has a series of articles on Mendelian randomization 
that address historical perspectives, applications, and methodolo
gical issues.87–93 These papers are highly recommended reading 
for epidemiologists interested in the topic. 

Concluding remarks 
We have briefly considered how the advent of the genomics era 
could lead to a ‘renaissance’ of observational epidemiology, 
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establishing its crucial role in ‘translating’ the human genome 
sequence into understanding health and preventing disease in 
populations. Genomics has the potential to enrich 
epidemiological methods along the continuum from study 
design and analysis to inference on ‘environmental’ as well as 
‘genetic’ causes of human disease. Because epidemiology and 
genomics exist in largely separate worlds where different 
languages are spoken, there is a growing need for 
multidisciplinary dialogue, training, and collaboration. In the 
end, it is likely that although the 21st century epidemiologist 
will use genomic tools, the practice of ‘omic’ epidemiology will 
not be so different from that of 19th century Broad Street Pump 
epidemiology, as it continues to be concerned with calculation, 
communication, and intervention.94 
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